Entri Populer

Kamis, 25 Oktober 2012

Pertamina Bangun Pembangkit Listrik dari Sampah -TEMPO.CO

TEMPO.CO, Jakarta - PT Pertamina (Persero) akan mengembangkan Pembangkit Listrik Tenaga Sampah (PLTSa) berkapasitas 120 Megawatt. Proyek yang berlokasi di Tempat Pembuangan Sampah Terpadu (TPST) Bantargebang, Bekasi, ini akan memanfaatkan 2.000 ton sampah per hari. 

"Ini membuktikan Pertamina tidak hanya fokus pada pengelolaan bisnis migas, melainkan sebagai perusahaan energi terintegrasi juga mengelola sumber-sumber energi baru dan terbarukan," kata Direktur Gas Pertamina Hari Karyuliarto dalam keterangan tertulis, Selasa, 23 Oktober 2012.


Hari menjelaskan proyek ini akan menggunakan teknologi yang efisien dan ramah lingkungan dengan tingkat pemanfaatan sampah secara maksimal, dan mencapai zero waste. Pertamina menyatakan akan menyeleksi penyedia teknologi yang sudah terbukti dan memenuhi karakteristik sampah yang ada di Bantargebang.
Proyek ini diperkirakan menelan investasi sebesar US$ 180 juta. Hari mengatakan pengembangan itu tidak terlepas dari regulasi pemerintah yang mendukung tumbuhnya investasi di sektor ini.


Saat ini harga pembelian listrik (feed in tariff) dari sampah kota tanpa sisa sampah (zero waste) Rp 1.050 per kWh, dan model pembangkit sampah yang masih menyisakan sampah (landfill) menjadi Rp 850 per kWh. Menteri ESDM Jero Wacik mengatakan pemerintah akan menaikkan harga pembelian listrik dari PLTSa ke kisaran US$ 12 sen per kWh sampai US$ 15 sen per kWh.


Hari mengharapkan kesepakatan yang lebih mengikat dapat dilakukan pada awal Desember 2012. Pada awal Oktober, Pertamina baru menandatangani kesepakatan awal dengan PT Godang Tuajaya, pengelola TPST Bantargebang. "Kami menargetkan pada 2014 PLTSa ini dapat beroperasi dan melistriki masyarakat," kata Hari.

Rabu, 24 Oktober 2012

Konsep Pengolahan Sampah Kota yang Zero Waste dengan Teknologi Pirolisis

Bukan rahasia lagi bahwa masalah sampah telah menjadi masalah umum di berbagai tempat, terutama di kota-kota besar. Tantangannya adalah bagaimana membuat unit pengolah sampah yang zero waste dan mendatangkan keuntungan? Integrasi teknologi pirolisis kontinyu dan biogas itulah jawabannya. Dengan pirolisis, sampah organik, plastik, dan ban bekas akan menghasilkan produk-produk yang spesifik yang bernilai ekonomi tinggi. Ketika mengolah sampah organik produk utama yang dihasilkan adalah arang, biooil, dan syngas. Ketiga-tiganya bisa digunakan untuk aplikasi energi. Sedangkan ketika mengolah plastik akan dihasilkan produk utama syn crude oil yang kualitasnya sama seperti minyak bumi. Pengolahan ban bekas dengan pirolisis akan dihasilkan produk utama syn crude oil seperti pada pengolahan plastik dan carbon black.

Dengan adanya penjualan dari produk-produk pirolisis tersebut maka aktivitas pengolahan sampah tersebut tidak hanya tergantung pada tipping fee, tetapi mayoritas keuntungan didapat dari penjualan produk-produk pirolisis tersebut. Selain pirolisis ada 2 proses thermal yang biasa digunakan untuk mengolah sampah yakni gasifikasi dan insinerasi, pirolisis mempunyai banyak keunggulan dibanding kedua metode tersebut, lebih detail silahkan klik disini.




Pada proses pengolahan sampah organik dengan teknologi pirolisis kontinyu ini, sebelum sampah organik masuk sebagai umpan unit pirolisis, kadar air sampah organik perlu diturunkan hingga sekitar 10% dengan menggunakan pengepressan mekanik. Pada proses ini akan dihasilkan air lindi (leachate) yang kaya bahan organik sehingga potensial dijadikan biogas dengan anaerobic digestion reactor, sehingga akan dihasilkan gas yang bisa untuk pembangkit listrik. Sedangkan produk samping berupa residu air akan lebih bersih karena komponen organik terurari saat pembentukan biogas, sehingga aman dibuang ke lingkungan dan residu padat akan dijadikan sebagai kompos berkualitas tinggi.
Posted by

Cara Cepat Membuat Biogas Dari Kotoran Hewan dan Sampah Dirumah July 19, 2011 By Energi Hijau

Gas methan terbentuk karena proses fermentasi secara anaerobik (tanpa udara) oleh bakteri methan atau disebut juga bakteri anaerobik dan bakteri biogas yang mengurangi sampah-sampah yang banyak mengandung bahan organik (biomassa) sehingga terbentuk gas methan (CH4) yang apabila dibakar dapat menghasilkan energi panas. Sebetulnya di tempat-tempat tertentu proses ini terjadi secara alamiah sebagaimana peristiwa ledakan gas yang terbentuk di bawah tumpukan sampah di Tempat Pembuangan Sampah Akhir (TPA) Leuwigajah, Kabupaten Bandung, Jawa Barat, (Kompas, 17 Maret 2005). Gas methan sama dengan gas elpiji (liquidified petroleum gas/LPG), perbedaannya adalah gas methan mempunyai satu atom C, sedangkan elpiji lebih banyak.


Kebudayaan Mesir, China, dan Roma kuno diketahui telah memanfaatkan gas alam ini yang dibakar untuk menghasilkan panas. Namun, orang pertama yang mengaitkan gas bakar ini dengan proses pembusukan bahan sayuran adalah Alessandro Volta (1776), sedangkan Willam Henry pada tahun 1806 mengidentifikasikan gas yang dapat terbakar tersebut sebagai methan. Becham (1868), murid Louis Pasteur dan Tappeiner (1882), memperlihatkan asal mikrobiologis dari pembentukan methan.

Pada akhir abad ke-19 ada beberapa riset dalam bidang ini dilakukan. Jerman dan Perancis melakukan riset pada masa antara dua Perang Dunia dan beberapa unit pembangkit biogas dengan memanfaatkan limbah pertanian. Selama Perang Dunia II banyak petani di Inggris dan benua Eropa yang membuat digester kecil untuk menghasilkan biogas yang digunakan untuk menggerakkan traktor. Karena harga BBM semakin murah dan mudah memperolehnya pada tahun 1950-an pemakaian biogas di Eropa ditinggalkan. Namun, di negara-negara berkembang kebutuhan akan sumber energi yang murah dan selalu tersedia selalu ada. Kegiatan produksi biogas di India telah dilakukan semenjak abad ke-19.
Alat pencerna anaerobik pertama dibangun pada tahun 1900. (FAO, The Development and Use of Biogas Technology in Rural Asia, 1981).

Negara berkembang lainnya, seperti China, Filipina, Korea, Taiwan, dan Papua Niugini, telah melakukan berbagai riset dan pengembangan alat pembangkit gas bio dengan prinsip yang sama, yaitu menciptakan alat yang kedap udara dengan bagian-bagian pokok terdiri atas pencerna (digester), lubang pemasukan bahan baku dan pengeluaran lumpur sisa hasil pencernaan (slurry) dan pipa penyaluran gas bio yang terbentuk.
Keuntungan teknologi ini dibanding sumber energi alternatif yang lain adalah: Menghasilkan gas yang dapat digunakan untuk kebutuhan sehari‑hari. Kotoran yang telah digunakan untuk menghasilkan gas dapat digunakan sebagal pupuk organik yang sangat baik. Dapat mengurangi kadar bakteri patogen yang terdapat dalam kotoran yang dapat menyebabkan penyakit bila kotoran hewan atau sampah tersebut ditimbun begitu saja.

Yang paling utama yaitu bisa mengurangi permasalahan penanggulangan sampah atau kotoran hewan menjadi sesuatu yang bermanfaat. Dengan teknologi tertentu, gas methan dapat dipergunakan untuk menggerakkan turbin yang menghasilkan energi listrik, menjalankan kulkas, mesin tetas, traktor, dan mobil. Secara sederhana, gas methan dapat digunakan untuk keperluan memasak dan penerangan menggunakan kompor gas sebagaimana halnya elpiji.

Biogas merupakan sebuah proses produksi gas bio dari material organik dengan bantuan bakteri. Proses degradasi material organik ini tanpa melibatkan oksigen disebut anaerobik digestion Gas yang dihasilkan sebagian besar (lebih 50 % ) berupa metana. material organik yang terkumpul pada digester (reaktor) akan diuraiakan menjadi dua tahap dengan bantuan dua jenis bakteri. Tahap pertama material orgranik akan didegradasi menjadi asam asam lemah dengan bantuan bakteri pembentuk asam. Bakteri ini akan menguraikan sampah pada tingkat hidrolisis dan asidifikasi. Hidrolisis yaitu penguraian senyawa kompleks atau senyawa rantai panjang seperti lemak, protein, karbohidrat menjadi senyawa yang sederhana. Sedangkan asifdifikasi yaitu pembentukan asam dari senyawa sederhana.

Setelah material organik berubah menjadi asam asam, maka tahap kedua dari proses anaerobik digestion adalah pembentukan gas metana dengan bantuan bakteri pembentuk metana seperti methanococus, methanosarcina, methano bacterium.

Perkembangan proses Anaerobik digestion telah berhasil pada banyak aplikasi. Proses ini memiliki kemampuan untuk mengolah sampah / limbah yang keberadaanya melimpah dan tidak bermanfaat menjadi produk yang lebih bernilai. Aplikasi anaerobik digestion telah berhasil pada pengolahan limbah industri, limbah pertanian limbah peternakan dan municipal solid waste (MSW).
Proses dekomposisi anaerobik pada dasarnya adalah proses yang terdiri atas dua tahap, yaitu :

1. Proses Asidifikasi (proses pengasaman)
Proses asidifikasi teradi karena kehadiran bakteri pembentuk asam yang disebut dengan bakteri asetogenik. Bakteri ini akan memecah struktur organik kompleks menjadi asam‑asam volatil (struktur kecil). Protein dipecah menjadi asam‑asam amino. Karbohidrat dipecah menjadi gula dengan struktur yang sederhana. Lemak dipecah menjadi asam yang berantai panjang. Hasil dari pemecahan ini akan dipecah lebih jauh menjadi asam‑asarn volaid. Bakteri asetogenik juga dapat melepaskan gas hidrogen dan gas karbondioksida.

2. Proses Produksi Metan
Bakteri pembentuk metan (bakteri metanogenik) menggunakan asam yang terbentuk darl proses asidifikasi. Selain itu juga terdapat bakteri yang dapat membentuk gas metan dari gas hidrogen dan karbondioksida yang dihasilkan dari proses pertama.
Ada tiga kelompok dari bakteri dan Arkhaebakteria yang berperan dalam proses pembentukan biogas, yaitu:
1. Kelompok bakteri fermentatif: Steptococci, Bacteriodes, dan beberapa jenis Enterobactericeae
2. Kelompok bakteri asetogenik: Desulfovibrio
3. Kelompok Arkhaebakteria dan bakteri metanogen: Mathanobacterium, Mathanobacillus, Methanosacaria, dan Methanococcus.

Faktor‑faktor yang Mempengaruhi Terbentuknya Biogas
Pengaruh pH dan Alkalinitas
Alkalinitas adalah besaran yang menunjukkan jumlah karbonat dalam larutan. Keasaman diindikasikan oleh besaran pH. Keasaman sangat berpengaruh terhadap proses dekomposisi anaerobik, karena bakteri yang terlibat dalam proses ini hanya dapat bertahan hidup pada interval pH 6,5‑8. Asam yang dihasilkan oleh bakteri asetogenik digunakan oleh bakteri metanogenik dan pada akhirnya pH akan konstan. Secara natural tidak akan terjadi perubahan pH dalarn interval yang besar. Perubahan pH yang besar dapat terjadi karena perubahan dari lingkungan.

Pengaruh Temperatur
Bakteri anaerob sangat sensitif terhadap perubahan temperatur. Temperatur optimum untuk terjadinya proses dekomposisi anaerobik adalah sekitar 35oC. Bila temperatur terlalu rendah aktivitas bakteri akan menurun dan mengakibatkan produksi biogas akan menurun. Di lain pihak bila temperatur terlalu tinggi bakteri akan mati dan mengakibatkan produksi biogas akan terhenti.

Reaktor Biogas
Reaktor biogas (digester anaerob) adalah sebuah tempat yang kondisinya dijaga sedenilkian rupa sehingga proses dekomposisi dapat berjalan dengan optimum. Parameter keoptimuman dari proses ini adalah produksi biogas yang tinggi dengan waktu reterisi yang tidak terlalu larna.

Kebutuhan Gas
Gas yang dibutuhkan untuk memasak 1 liter air adalah sekitar 26 liter, jadi sekitar 200 liter gas perhari dibutuhkan untuk kebutuhan sehari‑hari rumah tangga. Bila gas ini mengandung 60% gas metan kita mernbutuhkan sekitar 120 liter metan per hari dengan kandungan energi sebesar 39MJ/m3.
Kebutuhan Kotoran Hewan atau sampah

Satu kilogram padatan diolah (bagian darl kotoran hewan atau sampah yang dapat terdegradasi) memproduksi 0,5 m3 metan, tetapi hanya setengah dari padatan tersebut yang akan terdekomposisi. Hal ini berarti kita harus menambahkan sekitar 0,5 kg padatan volatil per hari untuk dapat menghasilkan 120 liter gas metan.

Ukuran Digester
Digester merupakan sebuah reaktor yang dirancang sedemikian rupa sehingga kondisi didalamnya menjadi anaerobic, sehingga bisa memungkinkan proses dekomposisi anaerobic bisa terjadi. Kotoran harus ditampung dalam digester selama proses dekomposisi berlangsung atau dengan kata lain sampai kotoran tersebut menghasilkan biogas. Proses dekomposisi oleh bakteri anaerobik sangat dipengaruhi oleh ternperatur.

Biogas sebagian besar mengandung gs metana (CH4) dan karbon dioksida (CO2), dan beberapa kandungan yang jumlahnya kecil diantaranya hydrogen sulfida (H2S) dan ammonia (NH3) serta hydrogen dan (H2), nitrogen yang kandungannya sangat kecil.

Energi yang terkandung dalam biogas tergantung dari konsentrasi metana (CH4). Semakin tinggi kandungan metana maka semakin besar kandungan energi (nilai kalor) pada biogas, dan sebaliknya semakin kecil kandungan metana semakin kecil nilai kalor. Kualitas biogas dapat ditingkatkan dengan memperlakukan beberapa parameter yaitu : Menghilangkan hidrogen sulphur, kandungan air dan karbon dioksida (CO2). Hidrogen sulphur mengandung racun dan zat yang menyebabkan korosi, bila biogas mengandung senyawa ini maka akan menyebabkan gas yang berbahaya sehingga konsentrasi yang di ijinkan maksimal 5 ppm. Bila gas dibakar maka hidrogen sulphur akan lebih berbahaya karena akan membentuk senyawa baru bersama-sama oksigen, yaitu sulphur dioksida /sulphur trioksida (SO2 / SO3). senyawa ini lebih beracun. Pada saat yang sama akan membentuk Sulphur acid (H2SO3) suatu senyawa yang lebih korosif. Parameter yang kedua adalah menghilangkan kandungan karbon dioksida yang memiliki tujuan untuk meningkatkan kualitas, sehingga gas dapat digunakan untuk bahan bakar kendaraan. Kandungan air dalam biogas akan menurunkan titik penyalaan biogas serta dapat menimbukan korosif.

Ada beberapa jenis reactor biogas yang dikembangkan diantaranya adalah reactor jenis kubah tetap (Fixed-dome), reactor terapung (Floating drum), raktor jenis balon, jenis horizontal, jenis lubang tanah, jenis ferrocement. Dari keenam jenis digester biogas yang sering digunakan adalah jenis kubah tetap (Fixed-dome) dan jenis Drum mengambang (Floating drum). Beberapa tahun terakhi ini dikembangkan jenis reactor balon yang banyak digunakan sebagai reactor sedehana dalam skala kecil.

1. Reaktor kubah tetap (Fixed-dome)
Reaktor ini disebut juga reaktor china. Dinamakan demikian karena reaktor ini dibuat pertama kali di chini sekitar tahun 1930 an, kemudian sejak saat itu reaktor ini berkembang dengan berbagai model. Pada reaktor ini memiliki dua bagian yaitu digester sebagai tempat pencerna material biogas dan sebagai rumah bagi bakteri,baik bakteri pembentuk asam ataupun bakteri pembentu gas metana. bagian ini dapat dibuat dengan kedalaman tertentu menggunakan batu, batu bata atau beton. Strukturnya harus kuat karna menahan gas aga tidak terjadi kebocoran. Bagian yang kedua adalah kubah tetap (fixed-dome). Dinamakan kubah tetap karena bentunknya menyerupai kubah dan bagian ini merupakan pengumpul gas yang tidak bergerak (fixed). Gas yang dihasilkan dari material organik pada digester akan mengalir dan disimpan di bagian kubah.
Keuntungan dari reaktor ini adalah biaya konstruksi lebih murah daripada menggunaka reaktor terapung, karena tidak memiliki bagian yang bergerak menggunakan besi yang tentunya harganya relatif lebih mahal dan perawatannya lebih mudah. Sedangkan kerugian dari reaktor ini adalah seringnya terjadi kehilangan gas pada bagian kubah karena konstruksi tetapnya.

2. Reaktor floating drum
Reaktor jenis terapung pertama kali dikembangkan di india pada tahun 1937 sehingga dinamakan dengan reaktor India. Memiliki bagian digester yang sama dengan reaktor kubah, perbedaannya terletak pada bagian penampung gas menggunakan peralatan bergerak menggunakan drum. Drum ini dapat bergerak naik turun yang berfungsi untuk menyimpan gas hasil fermentasi dalam digester. Pergerakan drum mengapung pada cairan dan tergantung dari jumlah gas yang dihasilkan.

Keuntungan dari reaktor ini adalah dapat melihat secara langsung volume gas yang tersimpan pada drum karena pergerakannya. Karena tempat penyimpanan yang terapung sehingga tekanan gas konstan. Sedangkan kerugiannya adalah biaya material konstruksi dari drum lebih mahal. faktor korosi pada drum juga menjadi masalah sehingga bagian pengumpul gas pada reaktor ini memiliki umur yang lebih pendek dibandingkan menggunakan tipe kubah tetap.